APPENDIX II

LIST OF SYMBOLS

Chapters II and III \vec{H} = magnetic field intensity = $\vec{H}_e + \vec{H}_d$ \dot{H}_{e} = external field $\dot{\tilde{H}}_{d}$ = demagnetizing field \dot{M} = magnetization = magnetic moment/volume $\dot{\tilde{M}}_{s}$ = saturation magnetization = M_{s}^{a} $\dot{\alpha} = (\alpha_1, \alpha_2, \alpha_3) = \text{direction cosines of magnetization}$ referred to crystal axes S = entropy T = temperature U = total energy E = total Legendre transformed energy \mathcal{E} = specific energy corresponding to \mathcal{E} \mathcal{E}_{H} = interaction energy \mathcal{E}_d = demagnetization energy \mathcal{E}_{ex} = exchange energy $\mathcal{E}_{\mathbf{k}}$ = crystal anisotropy energy \mathcal{E}_{me} = magnetoelastic energy \mathcal{E}_{A} = total anisotropy energy = $\mathcal{E}_{K} + \mathcal{E}_{me}$ \mathcal{E}_{LOC} = local energy = $\mathcal{E}_{K} + \mathcal{E}_{me} + \mathcal{E}_{ex}$ x; = Eulerian coordinates

a _i	=	Lagrangian coordinates
<pre>>xi/saj</pre>	=	deformation gradients
E _{ij}	=	finite strain
e _{i,i}	=	infinitesimal strain
e	=	extension = $\rho_0/\rho - 1$
ρ	=	density
S	=	symbol for shock wave
R	=	symbol for rarefaction wave
K ₁	=	crystal anisotropy constant
b1, b2	=	first order magnetoelastic constants
В	=	average of first order magnetoelastic constants
111, etc.	=	second order magnetoelastic constants
σw	=	domain wall energy/area
D	=	domain width
L	=	ferromagnetic slab thickness
А	=	exchange constant
F(Ω)	=	distribution function of magnetization vectors
n1, n2	=	$-M_{s}/2b_{1}e, -M_{s}/2b_{2}e$
^σ x ^{, σ} y	=	stress components
P	=	hydrostatic pressure
P	=	mean pressure
μ	=	shear modulus

Chapters IV and V

I = current

- \mathcal{E}_{0} = initial voltage on capacitor
 - C = capacitance
 - L = inductance

99